Question:9.
Sum of two matrices (Sum of two double dimension arrays).
Conditions:
The dimensions of both matrices should be same. i.e. the number of rows and columns in both should be the same.
Sol:
/* Sum of two matrix */
#include<stdio.h>
#include<stdlib.h>
int main()
{
int a[10][10],b[10][10],c[10][10],r1,c1,r2,c2,i,j;
/* clrscr(); */
/* input total rows and cols */
printf("Enter total rows and cols of 1st matrix ");
scanf("%d %d",&r1,&c1);
printf("Enter total rows and cols in 2nd matrix ");
scanf("%d %d",&r2,&c2);
/* condition */
if(r1==r2 && c1==c2)
printf("sum can be calculated\n");
else
{
printf("Sum cannot be calculated\n");
getch();
exit(1);
//or
//return;
}
/* input 1st matrix*/
printf("Enter elements of 1st matrix \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&a[i][j]);
}
}
/* input 2nd matrix */
printf("Enter elements of 2nd matrix\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&b[i][j]);
}
}
//display 1st matrix
printf("1st matrix is \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("%4d",a[i][j]);
}
printf("\n");
}
//display 2nd matrix
printf("2nd matrix is\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("%4d",b[i][j]);
}
printf("\n");
}
//cal and display sum matrix
printf("sum is \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
c[i][j]=a[i][j]+b[i][j];
printf("%4d",c[i][j]);
}
printf("\n");
}
getch();
return(0);
}
/* Output */ Case:1 Enter total rows and cols of 1st matrix 2 3 Enter total rows and cols in 2nd matrix 3 6 Sum cannot be calculated Case:2 Enter total rows and cols of 1st matrix 3 3 Enter total rows and cols in 2nd matrix 3 3 sum can be calculated Enter elements of 1st matrix Enter [0][0] element 1 Enter [0][1] element 2 Enter [0][2] element 3 Enter [1][0] element 4 Enter [1][1] element 5 Enter [1][2] element 6 Enter [2][0] element 7 Enter [2][1] element 8 Enter [2][2] element 9 Enter elements of 2nd matrix Enter [0][0] element 3 Enter [0][1] element 6 Enter [0][2] element 9 Enter [1][0] element 5 Enter [1][1] element 2 Enter [1][2] element 3 Enter [2][0] element 6 Enter [2][1] element 4 Enter [2][2] element 2 1st matrix is 1 2 3 4 5 6 7 8 9 2nd matrix is 3 6 9 5 2 3 6 4 2 sum is 4 8 12 9 7 9 13 12 11
Question:10.
Difference of two matrices (Difference of two double dimension arrays).
Conditions:
The dimensions of both matrix should be same. i.e. number of rows and columns in both should be same.
Sol:
/* Difference of two matrix */
#include<stdio.h>
#include<stdlib.h>
int main()
{
int a[10][10],b[10][10],c[10][10],r1,c1,r2,c2,i,j;
/* clrscr(); */
/* input total rows and cols */
printf("Enter total rows and cols of 1st matrix ");
scanf("%d %d",&r1,&c1);
printf("Enter total rows and cols in 2nd matrix ");
scanf("%d %d",&r2,&c2);
/* condition */
if(r1==r2 && c1==c2)
printf("Difference can be calculated\n");
else
{
printf("Difference cannot be calculated\n");
getch();
exit(1);
//or
//return;
}
/* input 1st matrix*/
printf("Enter elements of 1st matrix \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&a[i][j]);
}
}
/* input 2nd matrix */
printf("Enter elements of 2nd matrix\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&b[i][j]);
}
}
//display 1st matrix
printf("1st matrix is \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("%4d",a[i][j]);
}
printf("\n");
}
//display 2nd matrix
printf("2nd matrix is\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("%4d",b[i][j]);
}
printf("\n");
}
//cal and display sum matrix
printf("Difference between two matrix \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
c[i][j]=a[i][j]-b[i][j];
printf("%4d",c[i][j]);
}
printf("\n");
}
getch();
return(0);
}
/* Output */ case:1 Enter total rows and cols of 1st matrix 3 2 Enter total rows and cols in 2nd matrix 6 3 Difference cannot be calculated case:2 Enter total rows and cols of 1st matrix 3 3 Enter total rows and cols in 2nd matrix 3 3 Difference can be calculated Enter elements of 1st matrix Enter [0][0] element 2 Enter [0][1] element 3 Enter [0][2] element 6 Enter [1][0] element 5 Enter [1][1] element 9 Enter [1][2] element 6 Enter [2][0] element 3 Enter [2][1] element 2 Enter [2][2] element 5 Enter elements of 2nd matrix Enter [0][0] element 1 Enter [0][1] element 2 Enter [0][2] element 3 Enter [1][0] element 6 Enter [1][1] element 5 Enter [1][2] element 9 Enter [2][0] element 6 Enter [2][1] element 3 Enter [2][2] element 5 1st matrix is 2 3 6 5 9 6 3 2 5 2nd matrix is 1 2 3 6 5 9 6 3 5 Difference between two matrix 1 1 3 -1 4 -3 -3 -1 0
Question:11.
Product of two matrices (Product of two double dimension arrays).
Conditions:
the number of columns in the 1st matrix should be equal to the number of rows in the 2nd matrix.
Sol:
//matrix product
/*
Product Of two matrix
Condition: number of columns in 1st matrix should be
equal to the numbers of rows in the 2nd matrix.
*/
#include<stdio.h>
#include<stdlib.h>
int main()
{
int a[10][10],b[10][10],c[10][10],r1,c1,r2,c2,i,j,k;
/* clrscr(); */
printf("Enter total rows and cols of 1st matrix ");
scanf("%d %d",&r1,&c1);
printf("Enter total rows and cols in 2nd matrix ");
scanf("%d %d",&r2,&c2);
if(c1==r2)
printf("Product can be calculated\n");
else
{
printf("Product cannot be calculated\n");
getch();
exit(1);
//or
//return;
}
printf("Enter elements of 1st matrix \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&a[i][j]);
}
}
printf("Enter elements of 2nd matrix\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("Enter [%d][%d] element ",i,j);
scanf("%d",&b[i][j]);
}
}
printf("1st matrix is \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c1;j++)
{
printf("%4d",a[i][j]);
}
printf("\n");
}
printf("2nd matrix is\n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("%4d",b[i][j]);
}
printf("\n");
}
/* to calculate product*/
for(i=0;i<r1;i++)
{
for(j=0;j<c2;j++)
{
c[i][j]=0;
for(k=0;k<c1;k++)
{
c[i][j]=c[i][j]+a[i][k]*b[k][j];
}
}
}
printf("product is \n");
for(i=0;i<r1;i++)
{
for(j=0;j<c2;j++)
{
printf("%4d",c[i][j]);
}
printf("\n");
}
getch();
return(0);
}
/* Output */ case:1 Enter total rows and cols of 1st matrix 2 3 Enter total rows and cols in 2nd matrix 6 5 Product cannot be calculated case:2 Enter total rows and cols of 1st matrix 3 3 Enter total rows and cols in 2nd matrix 3 3 Product can be calculated Enter elements of 1st matrix Enter [0][0] element 1 Enter [0][1] element 2 Enter [0][2] element 3 Enter [1][0] element 4 Enter [1][1] element 5 Enter [1][2] element 6 Enter [2][0] element 3 Enter [2][1] element 2 Enter [2][2] element 6 Enter elements of 2nd matrix Enter [0][0] element 3 Enter [0][1] element 2 Enter [0][2] element 5 Enter [1][0] element 6 Enter [1][1] element 3 Enter [1][2] element 2 Enter [2][0] element 5 Enter [2][1] element 1 Enter [2][2] element 2 1st matrix is 1 2 3 4 5 6 3 2 6 2nd matrix is 3 2 5 6 3 2 5 1 2 product is 30 11 15 72 29 42 51 18 31




